The Foundry of Builder

Christian Hergert
July 2025

f

o' o
@ GNOME



Bullder (revisited)

Started a little over 10 years ago to modernize GNOME app development

The first IDE to abstract containers as a first class primitive

Is a rather large GTK application (275k LOC + ~150K in broken off libraries)
Has birthed many new projects out of the code-base

Somewhat limiting because you need to be inside of Builder to take advantage

Many people use Builder to create project templates then jump to their editors
of choice (VS Code, Vim, Emacs, etc)

Code from Builder has ended up all over the place in GNOME and GTK



Side Quests

To create Builder | had to create a lot of other tooling

* libdazzle, jsonrpc-glib, template-glib, libdex, manuals, deviced, codesearch,
d-spy, gom, libspelling, libpanel (probably missing some others)

In some cases | had to become maintainer to keep the projects alive which
involved a great deal of new features and tech-debt reduction

* gtksourceview, libpeas
Some new core/devel apps along the way born of Builder code
* gnome-text-editor, sysprof, ptyxis, manuals, d-spy

Invented a new data-structure (piecetable/b+tree hybrid) while also using
existing knowledge for others (fast-fuzzy search w/ O(n*m) worst case)

Do multi-process the hard way before LSP/DAP w/ D-Bus and socketpair()



Side Quests (Cont...)

* Sometimes you have to work upstream
* We need macOS support so write a new GDK backend w/ GPU support

* The GPU renderer was increasingly difficult to improve, so rewrite it with all
the knowledge acquired in its initial creation (since done again by B. Otte)

* We needed faster terminal rendering so add GPU support to VTE
* Profiling was terrible on x86 64 so lobby distros for frame-pointers

* Completely redesign how we do async and 1O in C (libdex) including
futures/fibers, poll-able semaphores, await, work-stealing threadpools, io_uring
and more while supporting Linux, macOS, TheBSD(s), Solaris/lllumos, and
Windows

\f



Side Quests (Cont...)

* Some side-quests are still in progress today for future features
* Libmks, drafting, (and a few more TBA)

* Wrote a book on how Builder works so others can contribute


https://gitlab.gnome.org/chergert/builder-a-developers-notebook/-/raw/main/builder-a-developers-notebook.pdf?ref_type=heads&inline=false

I’'m Exhausted

e o
@ GNOME



Whny

* Often times GNOME bureaucratic processes exhaust any energy | had left

* Having applications depend on other applications is a non-goal of many
distributions, nor does it play well with sand-boxing

* Keeping up with releases is Actually a Lot of Work

* More than half of issues filed are extremely low quality due to lacking details,
system information, language barriers, aggressive language, condescending
attitudes, or just flat out entitlement



| can fix some of that

e o
@ GNOME



-oundry

A new CLlI, static, or shared library. Basically an IDE in a box including plug-ins

All of the core abstractions from Builder, built on libdex and makes heavy use
of futures, fibers, and thread-pools

Feature flags to compile in/out what you want for static library consumption
CLI tooling lets us unit test IDE features without starting up a GTK app
Allows for sharing a lot of Builder code across current/future applications

* Builder, Drafting, Manuals, Sysprof initially, some new ones TBA
Service/Manager oriented, even more so than Builder

* Services for Builds, Docs, VCS, Files, Text, Diagnostics, Dependencies,
LSPs, DAPs, Devices, SDKs, Reflection, Settings, Tests,
Debuggers/Profilers, Search, Commands, App runners, CLI tooling,
subprocess IPC/coordination, LLM/MCP possible



-oundry CLI

CLI can even be used like an IDE using “foundry enter”
Spawns a sub-shell on your PTY beneath the foundry command

Running Foundry commands in sub-shell proxies command to the parent
Foundry process allowing long running background jobs and low-latency

You do not need to use “foundry enter”, in other cases it will just incur a very
small startup time cost (generally < 100msec) for subsystems to settle such as
device/SDK managers

Lots of tooling is already ready, in fact | do most development with Foundry
now when I'm in a terminal



-oundry CLI (Cont...)

* Try it now on a project that you use in Builder

$ foundry clone git@gitlab.gnome.org:chergert/ptyxis
$ cd ptyxis/

$ foundry run

‘V



-oundry-GTK

* A new static or shared library that bridges Foundry APIs to GTK
* Also links with some most-likely used libraries for easy integration
* GtkSourceView for text editing
* VTE for terminals w/ palette support similar to Ptyxis
* Libspelling
* WebKit

* Does not link against libadwaita to allow for use by non-GNOME, but GTK-
consuming platforms (Elementary, XFCE, MATE, Cinnamon, etc). This
provides the inner workings, not your UI/HIG/Patterns

\f



Come and Help!

e o
@ GNOME



L ots to Work On

A lot of core services are in place which make it more obvious how things work
Come take a look at it and start contributing
If you tinker with it please help me write documentation/FAQs/etc

The new developer app Manuals is a great example if you want to see how to
consume it from an application

Builder to get re-based on Foundry and fully expect to cut down the code-size
by more than half (which was already halved once in GTK 3 - 4 transition)

Write specialized tools using specific subsystems (debugger Ul stands out as
fairly obvious) or new plug-ins

Find ways to use LLM/MCP with ethically sourced local models to automate the
more tedious parts of software creation (summaries for releases? does my
issue comment sound rude? Anything?)



Thank You!

https://qgitlab.gnome.or NOME/foundr

K11 4

C

GNOME"


https://gitlab.gnome.org/GNOME/foundry/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

