

The Foundry of Builder

Christian Hergert
July 2025

TM

Builder (revisited)
• Started a little over 10 years ago to modernize GNOME app development

• The first IDE to abstract containers as a first class primitive

• Is a rather large GTK application (275k LOC + ~150K in broken off libraries)

• Has birthed many new projects out of the code-base

• Somewhat limiting because you need to be inside of Builder to take advantage

• Many people use Builder to create project templates then jump to their editors
of choice (VS Code, Vim, Emacs, etc)

• Code from Builder has ended up all over the place in GNOME and GTK

TM

Side Quests
• To create Builder I had to create a lot of other tooling

• libdazzle, jsonrpc-glib, template-glib, libdex, manuals, deviced, codesearch,
d-spy, gom, libspelling, libpanel (probably missing some others)

• In some cases I had to become maintainer to keep the projects alive which
involved a great deal of new features and tech-debt reduction

• gtksourceview, libpeas

• Some new core/devel apps along the way born of Builder code

• gnome-text-editor, sysprof, ptyxis, manuals, d-spy

• Invented a new data-structure (piecetable/b+tree hybrid) while also using
existing knowledge for others (fast-fuzzy search w/ O(n*m) worst case)

• Do multi-process the hard way before LSP/DAP w/ D-Bus and socketpair()

TM

Side Quests (Cont...)
• Sometimes you have to work upstream

• We need macOS support so write a new GDK backend w/ GPU support

• The GPU renderer was increasingly difficult to improve, so rewrite it with all
the knowledge acquired in its initial creation (since done again by B. Otte)

• We needed faster terminal rendering so add GPU support to VTE

• Profiling was terrible on x86_64 so lobby distros for frame-pointers

• Completely redesign how we do async and IO in C (libdex) including
futures/fibers, poll-able semaphores, await, work-stealing threadpools, io_uring
and more while supporting Linux, macOS, TheBSD(s), Solaris/Illumos, and
Windows

TM

Side Quests (Cont...)
• Some side-quests are still in progress today for future features

• Libmks, drafting, (and a few more TBA)

• Wrote a book on how Builder works so others can contribute

TM

https://gitlab.gnome.org/chergert/builder-a-developers-notebook/-/raw/main/builder-a-developers-notebook.pdf?ref_type=heads&inline=false

I’m Exhausted

TM

Why
• Often times GNOME bureaucratic processes exhaust any energy I had left

• Having applications depend on other applications is a non-goal of many
distributions, nor does it play well with sand-boxing

• Keeping up with releases is Actually a Lot of Work

• More than half of issues filed are extremely low quality due to lacking details,
system information, language barriers, aggressive language, condescending
attitudes, or just flat out entitlement

TM

I can fix some of that

TM

Foundry
• A new CLI, static, or shared library. Basically an IDE in a box including plug-ins

• All of the core abstractions from Builder, built on libdex and makes heavy use
of futures, fibers, and thread-pools

• Feature flags to compile in/out what you want for static library consumption

• CLI tooling lets us unit test IDE features without starting up a GTK app

• Allows for sharing a lot of Builder code across current/future applications

• Builder, Drafting, Manuals, Sysprof initially, some new ones TBA

• Service/Manager oriented, even more so than Builder

• Services for Builds, Docs, VCS, Files, Text, Diagnostics, Dependencies,
LSPs, DAPs, Devices, SDKs, Reflection, Settings, Tests,
Debuggers/Profilers, Search, Commands, App runners, CLI tooling,
subprocess IPC/coordination, LLM/MCP possible

TM

Foundry CLI
• CLI can even be used like an IDE using “foundry enter”

• Spawns a sub-shell on your PTY beneath the foundry command

• Running Foundry commands in sub-shell proxies command to the parent
Foundry process allowing long running background jobs and low-latency

• You do not need to use “foundry enter”, in other cases it will just incur a very
small startup time cost (generally < 100msec) for subsystems to settle such as
device/SDK managers

• Lots of tooling is already ready, in fact I do most development with Foundry
now when I’m in a terminal

TM

Foundry CLI (Cont...)
• Try it now on a project that you use in Builder

$ foundry clone git@gitlab.gnome.org:chergert/ptyxis

$ cd ptyxis/

$ foundry run

TM

Foundry-GTK
• A new static or shared library that bridges Foundry APIs to GTK

• Also links with some most-likely used libraries for easy integration

• GtkSourceView for text editing

• VTE for terminals w/ palette support similar to Ptyxis

• Libspelling

• WebKit

• Does not link against libadwaita to allow for use by non-GNOME, but GTK-
consuming platforms (Elementary, XFCE, MATE, Cinnamon, etc). This
provides the inner workings, not your UI/HIG/Patterns

TM

Come and Help!

TM

Lots to Work On
• A lot of core services are in place which make it more obvious how things work

• Come take a look at it and start contributing

• If you tinker with it please help me write documentation/FAQs/etc

• The new developer app Manuals is a great example if you want to see how to
consume it from an application

• Builder to get re-based on Foundry and fully expect to cut down the code-size
by more than half (which was already halved once in GTK 3 → 4 transition)

• Write specialized tools using specific subsystems (debugger UI stands out as
fairly obvious) or new plug-ins

• Find ways to use LLM/MCP with ethically sourced local models to automate the
more tedious parts of software creation (summaries for releases? does my
issue comment sound rude? Anything?)

TM

TM

Thank You!
https://gitlab.gnome.org/GNOME/foundry/

https://gitlab.gnome.org/GNOME/foundry/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

